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Goal: Improve QA by decomposing hard questions into easier sub-

guestions that existing QA systems can answetr.

Problem: Prior work learns to decompose questions by relying

human annotation and extractive heuristics.

Solution: Decompose questions with unsupervised methods, using

2 stages (Figure 1):

(1) Construct a noisy, “pseudo-decomposition” for each hard
question by retrieving relevant sub-question candidates.

(2) Train neural text generation models on that data with standard
or unsupervised sequence-to-sequence learning.

Finding: We greatly improve multi-hop QA on HotpotQA with

unsupervised decompositions, using a 3-stage method (Figure 2):

(1) Generate single-hop sub-questions for a multi-hop question.

(2) Answer sub-questions with a single-hop QA model.

(3) Add sub-questions and their answers as additional input for a
multi-hop QA model.
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Q What profession do H. L. Mencken and Albert Camus have in common?
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Exam p I es Q1: Are both Coldplay and Pierre Bouvier

from the same country?

SQ:: Where are Coldplay and Coldplay from?

L Coldplay are a British rock band formed in 1996 by lead
vocalist and keyboardist Chris Martin and lead guitarist
Jonny Buckland at University College London (UCL).

SQ-2: What country is Pierre Bouvier from?

L Pierre Charles Bouvier (born 9 May 1979) 1s a Canadian

. T singer, songwriter, musician, composer and actor who 1s
Add inte rp retabil Ity to best known as the lead singer and guitarist of the rock

black-box QA models. i Nband Simple Plan.
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Q2: How many copies of Roald Dahl’s variation on a popular
anecdote sold?
SQ:: How many copies of Roald Dahl’s?
L His books have sold more than 250 million
copies worldwide.
SQ2> What is the name of the variation on a popular anecdote?
L “Mrs. Bixby and the Colonel’s Coat™ 1s a short story by

Roald Dahl that first appeared in the 1959 1ssue of Nugget.
A: more than 250 million

Generated sub-
questions are single-hop
and question-relevant.

Automatically learned
to decompose many
kinds of questions.
Improved QA across all

4 question categories
(Table 1).

Q3: Who is older, Annie Morton or Terry Richardson?

SQ:: Who is Annie Morton?

L Annie Morton (born October 8, 1970) 1s an
American model born in Pennsylvania.

SQ2: When was Terry Richardson born?

L Kenton Terry Richardson (born 26 July 1999) is an English
professional footballer who plays as a defender for
League Two side Hartlepool United.

A: Annie Morton

Sub-questions are
fluent, especially w.r.t.
supervised decomp-
ositions (Table 2).
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